Application of kinetic coupling of methane dry reforming and self-oscillatory methane oxidation over Ni for increasing yields of hydrogen and synthesis gas

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

On a nickel foil sample, methane dry reforming (MDR) in a stationary mode, methane oxidation (MO) with oxygen in a self-oscillatory mode, as well as the combined carrying out of these two reactions were studied over 12 × 12 mm Ni foil sample. It is shown that when MDR and MO reactions occur together, there is a kinetic coupling of these reactions, which manifests itself in a significant acceleration of MDR reaction and an increase in the concentrations of H2 and CO in certain phases of the self-oscillatory cycle compared with similar parameters on the same Ni sample in a stationary mode. The effect of acceleration of MDR and the increase in concentrations of H2 and CO were observed in the temperature range of 575—700°C. The maximum increase in the cycle-average concentration of H2 over the period of oscillation was 13.8 times at a temperature of 625°C with the composition of the initial gas mixture 48.25% СН4—48.25% СО2—3.5% О2. The maximum increase in the cycle-average concentration of CO was 4.6 times at a temperature of 625°C.

全文:

受限制的访问

作者简介

V. Bychkov

Semenov Institute of Chemical Physics RAS

编辑信件的主要联系方式.
Email: bychkov@chph.ras.ru
俄罗斯联邦, Kosygina str., 4, Moscow, 119991

Yu. Tulenin

Semenov Institute of Chemical Physics RAS

Email: bychkov@chph.ras.ru
俄罗斯联邦, Kosygina str., 4, Moscow, 119991

Yu. Gordienko

Semenov Institute of Chemical Physics RAS

Email: bychkov@chph.ras.ru
俄罗斯联邦, Kosygina str., 4, Moscow, 119991

O. Silchenkova

Semenov Institute of Chemical Physics RAS

Email: bychkov@chph.ras.ru
俄罗斯联邦, Kosygina str., 4, Moscow, 119991

M. Slinko

Semenov Institute of Chemical Physics RAS

Email: bychkov@chph.ras.ru
俄罗斯联邦, Kosygina str., 4, Moscow, 119991

V. Korchak

Semenov Institute of Chemical Physics RAS

Email: bychkov@chph.ras.ru
俄罗斯联邦, Kosygina str., 4, Moscow, 119991

参考

  1. Bradford M.C.J., Vannice M.A. // Catal. Rev. Sci. Eng. 1999. V. 41. P. 1.
  2. Крылов О.В. // Российский химический журнал. 2000. Т. 44. № 1. С. 19. (Krylov O.V. // Ross. Khim. Zh. 2000. V. 44. P. 19.)
  3. Shah Y.T., Gardner T.H. // Catal. Rev. Sci. Eng. 2014. V. 56. P. 476.
  4. Jang W.-J., Shim J.-O., Kim H.-M., Yoo S.-Y., Roh H.-S. // Catal. Today. 2019. V. 324. P. 15.
  5. Крючкова Т.А., Шешко Т.Ф., Кость В.В., Числова И.В., Яфарова Л.В., Зверева И.А., Лядов А.С. // Нефтехимия. 2020. Т. 60. № 5. С. 663.
  6. Грабченко М.В., Дорофеева Н.В., Лапин И.Н., La Parola V., Liotta L.F., Водянкина О.В. // Кинетика и катализ. 2021. T. 62. № 6. C. 718.
  7. Дорофеева Н.В., Харламова Т.С., Парола В. Ла., Лиотта Л.Ф., Водянкина О.В. // Докл. РАН. Химия, науки о материалах. 2022. Т. 505. № 1. С. 83.
  8. Дедов А.Г., Шляхтин О.А., Локтев А.С., Мазо Г.Н., Малышев С.А., Тюменова С.И., Баранчиков А.Е., Моисеев И.И. // Докл. АН. 2017. Т. 477. № 4. С. 425.
  9. Цодиков М.В., Тепляков В.В., Федотов А.С., Козицына Н.Ю., Бычков В.Ю., Корчак В.Н., Моисеев И.И. // Изв. АН. Сер. хим. 2011. № 1. С. 54.
  10. Бухаркина Т.В., Гаврилова Н.Н., Крыжановский А.С., Скудин В.В., Шульмин Д.А. // Мембраны и мембранные технологии. 2013. Т. 3. № 2. С. 139.
  11. Касацкий Н.Г., Найбороденко Ю.С., Китлер В.Д., Аркатова Л.А., Курина Л.Н., Галактионова Л.В., Голобоков Н.Н. Патент RU2351392 C1, 2009.
  12. Дедов А.Г., Локтев А.С., Мухин И.Е., Караваев А.А., Тюменова С.И., Баранчиков А.Е., Иванов В.К., Маслаков К.И., Быков М.А., Моисеев И.И. // Нефтехимия. 2018. Т. 58. № 2. С. 156.
  13. Галактионова Л.В., Аркатова Л.А., Курина Л.Н., Горбунова Е.И., Белоусова В.Н., Найбороденко Ю.С., Касацкий Н.Г., Голобоков Н.Н. // Журн. физ. химии. 2008. Т. 82. № 2. С. 271‒275.
  14. Платонов Е.А., Братчикова И.Г., Ягодовский В.Д., Мурга З.В. // Журн. физ. химии. 2017. Т. 91. № 8. С. 1302.
  15. Тарасов А.Л., Ткаченко О.П., Кириченко О.А., Кустов Л.М. // Изв. АН. Сер. хим. 2016. № 12. С. 2820.
  16. Rahimi A.R., AleEbrahimH., SohrabiM., Nouri S.M.M. // Kinet. Catal. 2023. V. 64. № 5. Р. 578.
  17. AhnS., LittlewoodP., LiuY., Marks T.J., Stair P.C. // ACS Catal. 2022. V. 12. P. 10522.
  18. Zhang M., Zhang J., Zhang Q., Han Y. // Appl. Catal. A: Gen. 2022. V. 639. Art. 118639.
  19. Yang E., Nam E., Jo Y., An K. // Appl. Catal. B: Environ. 2023. V. 339. Art. 123152.
  20. Wen F., Xu C., Huang N., Wang T., Sun X., Li H., Zhang R., Xia G. // Int. J. Hydrogen Energy. 2024. V. 69. P. 1481.
  21. Marinho A.L.A., Rabelo-Neto R.C., Bion N., Toniolo F.S., Noronha F.B. // Int. J. Hydrogen Energy. 2024. V. 1. P. 1151.
  22. Ghany M.A.A., Alsaffar M.A., Mageed A.K., Suk-kar K.A. // Int. J. Hydrogen Energy. 2024. V. 76. P. 386.
  23. Zhang J., Fan H., Wang Y., Li R., Ma Q., Zhao T.-S. // Int. J. Hydrogen Energy. 2024. V. 51. P. 399.
  24. Hu J., Galvita V.V., Poelman H., Detavernier C., Marin G.B. // Appl. Catal. B: Environ. 2018. V. 231. P. 123.
  25. Stroud T., Smith T.J., Saché E.L., Santos J.L., Centeno M.A., Arellano-Garcia H., Odriozola J.A., Reina T.R. // Appl. Catal. B: Environ. 2018. V. 224. P. 125.
  26. Löfberg A., Guerrero-Caballero J., Kane T., Rubbens A., Jalowiecki-Duhamel L. // Appl. Catal. B: Environ. 2017. V. 212. P. 159.
  27. Tian M., Wang C., Han Y., Wang X. // ChemCatChem. 2021. V. 13. P. 1615.
  28. Huang J., Liu W., Yang Y., Liu B. // ACS Catal. 2018. V. 8. P. 1748.
  29. Deng G., Zhang G., Zhu X., Guo Q., Liao X., Chen X., Li K. // Appl. Catal. B: Environ. 2021. V. 289. Art. 120033.
  30. LiM., van Veen A.C. // Appl. Catal. A: Gen. 2018. V. 550. P. 176.
  31. Bychkov V.Yu., Tyulenin Yu.P., Korchak V.N. Method to accelerate catalytic reaction of methane dry reforming over nickel. Patent RU2806145, 2023.
  32. Bychkov V.Yu., Tulenin Yu.P., Gordienko Yu.A., Sil’chenkova O.N., Korchak V.N. // Kinet. Catal. 2024. V. 65. № 4. P. 405.
  33. Zhang X.L., Hayward D.O., Mingos D.M.P. // Catal. Lett. 2002. V. 83. P. 149.
  34. Zhang X.L., Hayward D.O., Mingos D.M.P. // Catal. Lett. 2003. V. 86. P. 235.
  35. Tulenin Yu.P., Sinev M. Yu., Savkin V.V., Korchak V.N. // Catal. Today. 2004. V. 91—92. P. 155.
  36. Bychkov V. Yu., Tulenin Yu.P., Korchak V.N., Apte-kar E.L. //Appl. Catal. A: Gen. 2006. V. 3042. P. 21.
  37. Сараев А.А., Косолобов С.С., Каичев В.В., Бухтияров В.И. // Кинетика и катализ, 2015. Т. 56. № 5. С. 606.
  38. Saraev A.A., Vinokurov Z.S., Kaichev V.V., Shmakov A.N., Bukhtiyarov V.I. // Catal. Sci. Technol. 2017. V. 7. Art. 16461649.
  39. Bychkov V. Yu., Tyulenin Yu. P., Firsova A.A., Shafranovsky E.A., Gorenberg A. Ya., Korchak V.N. // Appl. Catal. A: Gen. 2013. V. 453. P. 71.
  40. Bychkov V. Yu., Tulenin Yu. P., Slinko M.M., Gorenberg A. Ya., Korchak V.N. // Catal. Lett. 2017. V. 147. P. 2664.
  41. Slinko M.M., Korchak V.N., Peskov N.V. // Appl. Catal. A: Gen. 2006. V. 303. P. 258.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. CO2 conversion (a) and H2 concentration (b) as functions of temperature during interaction of Ni foil with CH4 : CO2 = 1 : 1 mixture.

下载 (201KB)
3. Fig. 2. Time evolution of mass spectrometer signals at m/z values of 2 (H2), 15 (CH4), 18 (H2O), 28 (CO), 32 (O2), 44 (CO2) during interaction of 77% CH4–19% O2–4% Ar mixture with Ni foil at 700°C (40 ml/min).

下载 (139KB)
4. Fig. 3. Time evolution of mass spectrometer signals at m/z values of 2 (H2), 15 (CH4), 18 (H2O), 28 (CO), 32 (O2), 44 (CO2) during interaction of 48.25% CH4–48.25% Ar–3.5% O2 mixture with Ni foil at 650°C (30 ml/min).

下载 (247KB)
5. Fig. 4. Oscillation period versus temperature during interaction of Ni foil with 48.25% CH4–48.25% CO2–3.5% O2 mixture (20 ml/min).

下载 (78KB)
6. Fig. 5. Time evolution of CH4, CO2, H2, CO, and O2 concentrations during interaction of 48.25% CH4–48.25% CO2–3.5% O2 mixture (20 ml/min) with Ni foil at 700 (a), 650 (b), and 600°C (c).

下载 (628KB)
7. Fig. 6. H2 concentration oscillations during interaction of 48.25% CH4–48.25% CO2–3.5% O2 (20 ml/min) with Ni foil at 700 (1), 650 (2), and 600°C (3), and steady-state H2 concentrations in 48% CH4–48% CO2–4% Ar mixture at same temperatures.

下载 (194KB)
8. Fig. 7. Temperature dependence of steady-state H2 concentration in CH4 : CO2 = 1 : 1 mixture (1) and period-averaged H2 concentration in 48.25% CH4–48.25% CO2–3.5% O2 mixture (2).

下载 (95KB)
9. Fig. 8. Temperature dependence of steady-state CO concentration in CH4 : CO2 = 1 : 1 mixture (1) and period-averaged CO concentration in 48.25% CH4–48.25% CO2–3.5% O2 mixture (2).

下载 (98KB)
10. Fig. 9. Temperature dependence of steady-state CO2 conversion in CH4 : CO2 = 1 : 1 mixture (1) and period-averaged CO2 conversion in 48.25% CH4–48.25% CO2–3.5% O2 mixture (2).

下载 (98KB)
11. Fig. 10. Temperature dependence of steady-state CH4 conversion in CH4 : CO2 = 1 : 1 mixture (1) and period-averaged CH4 conversion in 48.25% CH4–48.25% CO2–3.5% O2 mixture (2).

下载 (98KB)