Influence of surfactants on the functioning of Micrococcus luteus 1-i strain in biofuel cells

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The operation of biofuel cells (BFC) based on the Micrococcus luteus 1-i strain under the action of the main representatives of various groups of surfactants has been analyzed. The following were tested: cetyltrimethylammonium bromide (cationic surfactant), Tween-80 (non-ionic surfactant), sodium lauryl sulfate (anionic surfactant). It was shown that cetyltrimethylammonium bromide reduced the electrical characteristics of BFC at concentrations of 10 mg/l, Tween-80 – from 5 ml/l, sodium lauryl sulfate – from 100 mg/l. A comparison of the electrogenic activity of bacteria in BFCs with their viability and the kinetics of the redox potential of the anolyte allowed us to conclude that the decrease in the efficiency of the studied BFCs under the influence of surfactants in the tested concentration ranges is associated with their toxic effect on microbial cells.

全文:

受限制的访问

作者简介

D. Stom

Surgut State University; Baikal Museum of the SB RAS; Irkutsk National Research Technical University

编辑信件的主要联系方式.
Email: stomd@mail.ru
ORCID iD: 0000-0001-9496-2961
俄罗斯联邦, Surgut; Listvyanka, Irkutsk region; Irkutsk

I. Topchiy

Irkutsk State University

Email: stomd@mail.ru
ORCID iD: 0000-0002-9091-4062
俄罗斯联邦, Irkutsk

G. Zhdanova

Irkutsk State University

Email: stomd@mail.ru
ORCID iD: 0000-0002-8355-9517
俄罗斯联邦, Irkutsk

P. Stashkevich

Irkutsk State University

Email: stomd@mail.ru
俄罗斯联邦, Irkutsk

K. Khramtsova

Irkutsk State University

Email: stomd@mail.ru
俄罗斯联邦, Irkutsk

Yu. Petrova

Surgut State University

Email: stomd@mail.ru
ORCID iD: 0000-0003-3702-2249
俄罗斯联邦, Surgut

R. Lepikash

Tula State University

Email: stomd@mail.ru
ORCID iD: 0000-0001-7853-2937
俄罗斯联邦, Tula

A. Kupchinsky

Baikal Museum of the SB RAS

Email: stomd@mail.ru
ORCID iD: 0000-0001-8884-8636
俄罗斯联邦, Listvyanka, Irkutsk region

参考

  1. Arora, J., Ranjan, A., Chauhan, A., Biswas, R., Rajput, V.D., and Sushkova, S., Surfactant pollution, an emerging threat to ecosystem: Approaches for effective bacterial degradation, J. Appl. Microbiol., 2022, vol. 133, р. 1229. https://doi.org/10.1111/jam.15631
  2. Massarweh, O. and Abushaikha, A.S., The use of surfactants in enhanced oil recovery: A review of recent advances, Energy Reports, 2020, vol. 6, р. 3150. https://doi.org/10.1016/j.egyr.2020.11.009
  3. Sutormin, O.S., Kolosova, E.M., Torgashina, I.G., Kratasyuk, V.A., Kudryasheva, N.S., Kinstler, J.S., and Stom, D.I., Toxicity of Different Types of Surfactants via Cellular and Enzymatic Assay Systems, Int. J. Mol. Sci., 2023, vol. 24, р. 515. https://doi.org/ 10.3390/ijms24010515
  4. Choi, Y., Jung, E., Park, H., Jung, S., and Kim, S., Effect of initial carbon sources on the performance of a microbial fuel cell containing environmental microorganism Micrococcus luteus, Korean Chem. Soc., 2007, vol. 28(9), p. 1591.
  5. Chesnokova, A.N., Zakarchevsky, S.A., Zhdanova, G.O., and Stom, D.I., Electrochemical Parameters of Microbial Fuel Cells Based on the Micrococcus luteus Strain, New Ion-Exchange Membranes and Various Sugars, Russ. J. Electrochem., 2023, vol. 59, р. 660. https://doi.org/10.1134/S1023193523090057
  6. Stom, D.I., Saksonov, M.N., Gavlik, E.I., Zhdanova, G.O., Sasim, S.A., Kazarinova, T. Ph., Tolstoy, M.Yu., and Gescher, J., Effect of Sodium Lauryl Sulfate on Sorption of Cells of the Electrogenic Bacterium Strain Micrococcus luteus on Carbon Cloth, Indian J. Microbiol., 2023, vol. 63, р. 50. https://doi.org/10.1007/s12088-023-01058-9
  7. Kuznetsov, A.V., Khorina, N.N., Konovalova, E.Yu., Amsheev, D.Yu., Ponamoreva, O.N., and Stom, D.I., Bioelectrochemical processes of oxidation of dicarboxylic amino acids by strain Micrococcus luteus 1-I in a biofuel cell, IOP Conf Ser: Earth and Environ Sci, 2021, vol. 808, 012038. https://doi.org/10.1088/1755-1315/808/1/012038
  8. Stom, D.I., Zhdanova, G.O., Kalashnikova, O.B., Bulaev, A.G., Kashevskii, A.V., Kupchinsky, A.B., Vardanyan, N.S., Ponamoreva, O.N., Alferov, S.V., Saksonov, M.N., Chesnokova, A.N., and Tolstoy, M.Yu., Acidophilic Microorganisms Leptospirillum sp., Acidithiobacillus sp., Ferroplasma sp. As a Cathodic Bioagents in a MFC, Geomicrobiol. Journal, 2021, vol. 38(4), р. 340, doi: 10.1080/01490451.2020.1856980
  9. Стом, Д.И., Жданова, Г.О., Юдина, Н.Ю., Алферов, С.В., Чеснокова, А.Н., Толстой, М.Ю., Купчинский, А.Б., Саксонов, М.Н., Закарчевский, С.А., Энхдул, Т., Францетти, А., Рахимнеджад, М. Комплексный биопрепарат “Доктор Робик” как биоагент для утилизации фитомассы водных растений в биотопливных элементах. Изв. вузов. Прикладная химия и биотехнология. 2022. Т. 12. № 1 (40). С. 50. [Stom, D.I., Zhdanova, G.O., Yudina, N.Yu., Alferov, S.V., Chesnokova, A.N., Tolstoy, M.Yu., Kupchinsky, A.B., Saksonov, M.N., Zakarchevskiy, S.A., Enkhdul, T., Franzetti, A., and Rahimnejad, M., The “Doctor Robik 109” complex biopreparation as a bioagent for utilizing aquatic plant phytomass in biofuel cells, Proceedings of Universities. Applied Chemistry and Biotechnology (In Russian), 2022, vol. 12(1), p. 50.] https://doi.org/10.21285/2227-2925-2022-12-1-50-63
  10. Grigorova, R. and Norris, J.R., Methods in Microbiology, 1990, vol. 22, 618 р.
  11. Mushtaq, M., Al-Shalabi, E.W., and AlAmeri, W., A review on retention of surfactants in enhanced oil recovery: A mechanistic insight, Geoenergy Sci. and Engineering, 2023, vol. 230, 212243, https://doi.org/10.1016/j.geoen.2023.212243
  12. Domracheva, L.I. and Simakova, V.S., Reactions of pro- and eukaryotic microorganisms to the action of synthetic surfactants (review) Theoret. and Appl. Ecology, 2018, №1, p. 5.
  13. Tominaga, M., Ohmura, K., Ototani, Sh., and Darmawan, R., Accelerating electricity power generation and shortening incubation period of microbial fuel cell operated in tidal flat sediment by artificial surfactant anode modification, Biochem. Engineering Journal, 2022, vol. 185, 108536. https://doi.org/10.1016/j.bej.2022.108536
  14. Pasternak, G., Askitosari, T.D., and Rosenbaum, M.A., Biosurfactants and synthetic surfactants in bioelectrochemical systems: a mini-review, Front. Microbiol., 2020, vol. 358. https://doi.org/10.3389/fmicb.2020.00358
  15. Zhang, Y., Jiang, J., Zhao, Q., Gao, Y., Wang, K., Ding, J., Yu, H., and Yao, Y., Accelerating anodic biofilms formation and electron transfer in microbial fuel cells: role of anionic biosurfactants and mechanism, Bioelectrochem., 2017, vol. 117, р. 48. https://doi.org/10.1016/j.bioelechem.2017.06.002
  16. Zhang, Y., Jiang, J., Zhao, Q., Wang, K., and Yu, H., Analysis of functional genomes from metagenomes: revealing the accelerate electron transfer in microbial fuel cell with rhamnolipid addition, Bioelectrochem., 2018, vol. 119, p. 59. https://doi.org/10.1016/j.bioelechem.2017.08.010
  17. Cheng, P., Shan, R., Yuan, H.-R., Deng, L., and Chen, Y., Enhanced Rhodococcus pyridinivorans HR-1 anode performance by adding trehalose lipid in microbial fuel cell, Bioresour. Technol., 2018, vol. 267, p. 774. https://doi.org/10.1016/j.biortech.2018.08.006
  18. Naik, S. and Jujjavarapu, S.E., Enhanced bioelectricity generation by novel biosurfactant producing bacteria in microbial fuel cells, Environ. Technol. Innov., 2021, vol. 23, 101665. https://doi.org/10.1016/j.eti.2021.101665
  19. Hwang, J.-H., Kim, K.-Y., Resurreccion, E.P., and Lee, W.H., Surfactant addition to enhance bioavailability of bilge water in single chamber microbial fuel cells (MFCs), J. Hazardous Mater., 2019, vol. 368, p. 732. https://doi.org/10.1016/j.jhazmat.2019.02.007
  20. Wen, Q., Kong, F., Ma, F., Ren, Y., and Pan, Zh., Improved performance of air-cathode microbial fuel cell through additional Tween 80, J. Power Sources, 2011, vol. 196(3), p. 899. https://doi.org/10.1016/j.jpowsour.2010.09.009

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. The two-chamber BFC used in the work [9]: 1 – anode chamber; 2 – cathode chamber; 3 – cathode electrode; 4 – anode electrode; 5 – rubber caps that close and fix the electrodes; 6 – rubber plug in the anode chamber, through which samples are taken and substrates and bioagents are introduced using a syringe; 7 – MF-4SK proton exchange membrane.

下载 (49KB)
3. Fig. in table 1

下载 (10KB)
4. Fig. in table 2

下载 (26KB)
5. Fig. in table 3

下载 (10KB)
6. Fig. 2. Effect of cationic surfactant cetyltrimethylammonium bromide on the dynamics of voltage (measured in open circuit mode) (a) and current (b) (measured in short circuit mode) generated in a biofuel cell by the M. luteus 1-i strain (anolyte – model wastewater (substrate – peptone 500 mg/l), electrodes – carbon fabric); ● – control (without surfactant); × – CTAB 10 mg/l; ▲ – CTAB 50 mg/l; ■ – CTAB 100 mg/l; ♦ – CTAB 500 mg/l.

下载 (156KB)
7. Fig. 3. The effect of the cationic surfactant cetyltrimethylammonium bromide on the power of the studied biofuel cells during their operation under an external load (Ω) from 10 Ohm to 100 kOhm (anodic biocatalyst – strain M. luteus 1-i; anolyte – model wastewater (substrate – peptone 500 mg/l), electrodes – carbon fabric).

下载 (83KB)
8. Fig. 4. Effect of nonionic surfactant Tween-80 on the dynamics of voltage (measured in open circuit mode) (a) and current (b) (measured in short circuit mode) generated in a biofuel cell by the M. luteus 1-i strain (anolyte – model wastewater (substrate – peptone 500 mg/l), electrodes – carbon fabric); ● – control (without surfactant); × – Tween-80 5 ml/l; ▲ – Tween-80 10 ml/l; ■ – Tween-80 30 ml/l; ♦ – Tween-80 50 ml/l.

下载 (188KB)
9. Fig. 5. The effect of non-ionic surfactant tween-80 on the power of the studied biofuel cells during their operation under an external load (Ω) from 10 Ohm to 100 kOhm (anodic biocatalyst – strain M. luteus 1-i; anolyte – model wastewater (substrate – peptone 500 mg/l), electrodes – carbon fabric).

下载 (79KB)
10. Fig. 6. Effect of the anionic surfactant sodium lauryl sulfate on the dynamics of voltage (measured in open circuit mode) (a) and current (b) (measured in short circuit mode) generated in a biofuel cell by the M. luteus 1-i strain (anolyte – model wastewater (substrate – peptone 500 mg/l), electrodes – carbon fabric); ● – control (without surfactant); × – SLS 50 mg/l; ▲ – SLS 100 mg/l; ■ – SLS 500 mg/l; ♦ – SLS 1000 mg/l.

下载 (162KB)
11. Fig. 7. The effect of different concentrations of sodium lauryl sulfate on the change in the number of viable cells of M. luteus 1-i during the utilization of peptone (0.5 g/l) in BTE.

下载 (73KB)
12. Fig. 8. The effect of different concentrations of sodium lauryl sulfate on the change in the oxidation-reduction potential of the BTE anolyte with the M. luteus 1-i culture as an anode biocatalyst.

下载 (103KB)

版权所有 © Russian Academy of Sciences, 2024