Comparison of electrochemical characteristics of thin-film batteries with a composite anode Si@O@Al and lithium metal formed by in situ method

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

This study compares the electrochemical characteristics of solid-state thin-film lithium-ion batteries with two different structures: Ti/Anode/LiPON/LiCoO2/Ti (with an anode) and Ti/LiPON/LiCoO2/Ti (anode-free). Si@O@Al composite anode with thicknesses of 154 and 15 nm, as well as pre-lithiated LixSi@O@Al composite with a thickness of 192 nm, were used as anodes. In anode-free batteries, the lithium anode was formed by the in situ method. Batteries with 154 nm Si@O@Al and LixSi@O@Al anodes have good cyclability due to their moderate volume change during lithium-ion insertion/extraction and reliable adhesion to the LiPON solid electrolyte. These batteries are promising in terms of high energy density due to the lithium anode formation in situ, although they have poor cycling performance due to peeling off the upper current collector. The introducing of a Si@O@Al thin film with a thickness of ~15 nm between the LiPON and the current collector allows maintaining the high energy density that is inherent in batteries with lithium anodes, while also improving their cyclability.

Texto integral

Acesso é fechado

Sobre autores

S. Kurbatov

RUDN University

Autor responsável pela correspondência
Email: kurbatov-93@bk.ru
Rússia, 6 Miklukho-Maklaya St, Moscow, 117198

L. Mazaletsky

P.G. Demidov Yaroslavl State University

Email: kurbatov-93@bk.ru
Rússia, 14 Sovetskaya str., Yaroslavl, 150003

A. Mironenko

P.G. Demidov Yaroslavl State University

Email: kurbatov-93@bk.ru
Rússia, 14 Sovetskaya str., Yaroslavl, 150003

V. Naumov

P.G. Demidov Yaroslavl State University

Email: kurbatov-93@bk.ru
Rússia, 14 Sovetskaya str., Yaroslavl, 150003

A. Rudy

P.G. Demidov Yaroslavl State University

Email: rudy@uniyar.ac.ru
Rússia, 14 Sovetskaya str., Yaroslavl, 150003

A. Skundin

A.N. Frumkin Institute of Physical Chemistry and Electrochemistry of RAS

Email: kurbatov-93@bk.ru
Rússia, Moscow

D. Pukhov

Valiev Institute of Physics and Technology of Russian Academy of Sciences

Email: kurbatov-93@bk.ru

Yaroslavl branch

Rússia, Yaroslavl

M. Smirnova

P.G. Demidov Yaroslavl State University

Email: kurbatov-93@bk.ru
Rússia, 14 Sovetskaya str., Yaroslavl, 150003

Bibliografia

  1. Skundin, A., Kulova, T., Rudy, A., and Mironenko, A., All solid state thin-film lithium-ion batteries: materials, technology, and diagnostics. CRC Press, 2021, 201 p.
  2. Xia, Q., Zan, F., Zhang, Q., Liu, W., Li, Q., He, Y., Hua, J., Liu, J., Xu, J., Wang, J., Wu, C., and Xia H., All‐solid‐state thin film lithium/lithium‐ion microbatteries for powering the Internet of things, Adv. Mater., 2023, vol. 35, p. 2200538. doi: 10.1002/adma.202200538
  3. Kuriyama, T., Suzuki, A., Okamoto, Y., Kimura, I., Morikawa, Y., and Mita, Y., A micromachined all-solid on-chip thin-film battery towards uninterruptible photovoltaic cells, 2018 Symposium on Design, Test, Integration & Packaging of MEMS and MOEMS (DTIP). IEEE, 2018. p. 1. doi: 10.1109/DTIP.2018.8394215
  4. Kasemchainan, J. and Bruce, P.G., All-solid-state batteries and their remaining challenges, Johnson Matthey Technol. Rev., 2018, vol. 62, p. 177. doi: 10.1595/205651318X696747
  5. Wu, B., Chen, C., Danilov, D.L., Eichel, R.A., and Notten, P.H., All-solid-state thin film Li-ion batteries: New challenges, new materials, and new designs, Batteries, 2023, vol. 9, no. 3, p. 186. doi: 10.3390/batteries9030186
  6. Kerman, K., Luntz, A., Viswanathan, V., Chiang, Y.M., and Chen, Z., Practical challenges hindering the development of solid state Li-ion batteries, J. Electrochem. Soc., 2017, vol. 164, p. A1731. doi: 10.1149/2.1571707jes
  7. Bates, J.B., Dudney, N.J., Gruzalski, G.R., Zuhr, R.A., Choudhury, A., Luck, C.F., and Robertson, J.D., Electrical properties of amorphous lithium electrolyte thin films, Solid State Ionics, 1992, vol. 53‒56, p. 647. doi: 10.1016/0167-2738(92)90442-R
  8. Васильев, С.В., Геращенко, В.Н., Кулова, Т.Л., Лебедев, М.Е., Мазалецкий, Л.А., Метлицкая, А.В., Мироненко, А.А., Московский, С.Б., Никольская, Н.Ф., Пухов, Д.Э., Рудый, А.С., Скундин, А.М., Сологуб, В.А., Федоров, И.С., Чурилов, А.Б. Тонкопленочный положительный электрод на основе оксидов ванадия для литий-ионных аккумуляторов. Микроэлектроника. 2016. Т. 45. C. 363. doi: 10.7868/S0544126916050112 [Vasil’ev, S.V., Gerashchenko, V.N., Kulova, T.L., Lebedev, M.E., Mazaletskii, L.A., Metlitskaya, A.V., Mironenko, A.A., Moskovskii, S.B., Nikol’skaya, N.F., Pukhov, D.E., Rudyi, A.S., Skundin, A.M., Sologub, V.A., Fedorov, I.S., and Churilov, A.B., Thin-film positive electrode based on vanadium oxides for lithium-ion accumulators, Russ. Microelectron., 2016, vol. 45, p. 335.] doi: 10.1134/S1063739716050115
  9. Julien, C.M. and Mauger, A., Review of 5-V electrodes for Li-ion batteries: status and trends, Ionics, 2013, vol. 19, p. 951. doi: 10.1007/s11581-013-0913-2
  10. Dudney, N.J., West, W.C., and Nanda, J., Handbook of solid-state batteries: 2nd Edition. Eds. World Scientific, 2015. vol. 6, 822 p.
  11. Phan, V.P., Pecquenard, B., and Le Cras, F., High‐performance all‐solid‐state cells fabricated with silicon electrodes, Adv. Funct. Mater., 2012, vol. 22, p. 2580. doi: 10.1002/adfm.201200104
  12. Pearse, A.J., Schmitt, T.E., Fuller, E.J., El-Gabaly, F., Lin, C.F., Gerasopoulos, K., Kozen, A.C., Talin, A.A., Rubloff, G., and Gregorczyk, K.E., Nanoscale solid state batteries enabled by thermal atomic layer deposition of a lithium polyphosphazene solid state electrolyte, Chem. Mater., 2017, vol. 29, p. 3740. doi: 10.1021/acs.chemmater.7b00805
  13. Mironenko, A.A., Fedorov, I.S., Rudy, A.S., Andreev, V.N., Gryzlov, D.Y., Kulova, T.L., and Skundin, A.M., Charge–discharge performances of the Si–O–Al electrodes, Monatsh. Chem., 2019, vol. 150, p. 1753. doi: 10.1007/s00706-019-02497-1
  14. Рудый, А.С., Мироненко, А.А., Наумов, В.В., Федоров, И.С., Скундин, А.М., Торцева, Ю.С. Тонкопленочные твердотельные литий-ионные аккумуляторы системы LiCoO 2 /LiPON/Si@O@Al. Микроэлектроника. 2021. Т. 50. С. 370. doi: 10.31857/S0544126921050057 [Rudy, A.S., Mironenko, A.A., Naumov, V.V., Fedorov, I.S., Skundin, A.M., and Tortseva, Yu.S., Thin-Film Solid State Lithium-Ion Batteries of the LiCoO 2 /Lipon/Si@O@Al System, Russ. Microelectron., 2021, vol. 50, p. 333.] doi: 10.1134/S106373972105005X
  15. Neudecker, B.J., Dudney, N.J., and Bates, J.B., “Lithium-Free” thin-film battery with in situ plated Li anode, J. Electrochem. Soc., 2000, vol. 147, p. 517. doi: 10.1149/1.1393226
  16. Yamamoto, T., Iwasaki, H., Suzuki, Y., Sakakura, M., Fujii, Y., Motoyama, M., and Iriyama, Y., A Li-free inverted-stack all-solid-state thin film battery using crystalline cathode material, Electrochem. Commun., 2019, vol. 105, p. 1. doi: 10.1016/j.elecom.2019.106494
  17. Lee, S.H., Liu, P., and Tracy, C.E., Lithium thin-film battery with a reversed structural configuration SS/Li/Lipon/ Li x V 2 O 5 /Cu, Electrochem. Solid-State Lett., 2003, vol. 6, p. A275. doi: 10.1149/1.1623171
  18. Xie, Z., Wu, Z., An, X., Yue, X., Wang, J., Abudula, A., and Guan, G., Anode-free rechargeable lithium metal batteries: Progress and prospects, Energy Storage Mater., 2020, vol. 32, p. 386. doi: 10.1016/j.ensm.2020.07.004
  19. Liu, S., Jiao, K., and Yan, J., Prospective strategies for extending long-term cycling performance of anode-free lithium metal batteries, Energy Storage Mater., 2023, vol. 54, p. 689. doi: 10.1016/j.ensm.2022.11.021
  20. Jo, C.-H., Sohn, K.-S., and Myung, S.-T., Feasible approaches for anode-free lithium-metal batteries as next generation energy storage systems, Energy Storage Mater., 2023, vol. 57, p. 471. doi: 10.1016/j.ensm.2023.02.040
  21. Bates, J.B., Dudney, N.J., Neudecker, B.J., Hart, F.X., Jun, H.P., and Hackney, S.A., Preferred orientation of polycrystalline LiCoO 2 films, J. Electrochem. Soc., 2000, vol. 147, p. 59. doi: 10.1149/1.1393157
  22. Fleutot, B., Pecquenard, B., Martinez, H., Letellier, M., and Levasseur, A., Investigation of the local structure of LiPON thin films to better understand the role of nitrogen on their performance, Solid State Ionics, 2011, vol. 186, p. 29. doi: 10.1016/j.ssi.2011.01.006
  23. Akimoto, J., Gotoh, Y., and Oosawa, Y., Synthesis and structure refinement of LiCoO 2 single crystals, Solid State Chem., 1998, vol. 141, p. 298. doi: 10.1006/jssc.1998.7966
  24. Reimers, J.N. and Dahn, J.R., Electrochemical and in situ X-ray diffraction studies of lithium intercalation in Li x CoO 2 , J. Electrochem. Soc., 1992, vol. 139, p. 2091. doi: 10.1149/1.2221184
  25. Bates, J.B., Dudney, N.J., Neudecker, B., Ueda, A., and Evans, C.D., Thin-film lithium and lithium-ion batteries, Solid State Ionics, 2000, vol. 135, p. 33. doi: 10.1016/S0167-2738(00)00327-1
  26. Кулова, Т.Л., Скундин, А.М., Андреев, В.Н., Грызлов, Д.Ю., Мироненко, А.А., Рудый, А.С., Гусев, В.Н., Наумов, В.В. Исследование тонкопленочных электродов системы кремний-ку алюминий-кислород для литий-ионного аккумулятора. Электрохимическая энергетика. 2013. Т. 13. №. 3. С. 136. [Kulova, T.L., Skundin, A.M., Andreev, V.N., Gryzlov, D.Yu., Mironenko, A.A., Rudy, A.S., Gusev, V.N., and Naumov, V.V., A Study of thin-film electrodes of silicon‒aluminum‒oxygen system for lithium-ion battery, Elektrokhimicheskaya Energetika (in Russian) 2013, vol. 13, no. 3, p. 136.]
  27. Liao, C.L. and Fung, K.Z., Lithium cobalt oxide cathode film prepared by rf sputtering, J. Power Sources, 2004, vol. 128, p. 263. doi: 10.1016/j.jpowsour.2003.09.065
  28. Prachařová, J., Přidal, J., Bludska, J., Jakubec, I., Vorlı́ček, V., Malkova, Z., Makris, T.D., Giorgi, R., and Jastrabık, L., LiCoO 2 thin-film cathodes grown by RF sputtering, J. Power Sources, 2002, vol. 108, p. 204. doi: 10.1016/S0378-7753(02)00018-6
  29. Tintignac, S., Baddour-Hadjean, R., Pereira-Ramos, J.P., and Salot, R., High performance sputtered LiCoO 2 thin films obtained at a moderate annealing treatment combined to a bias effect, Electrochim. Acta, 2012, vol. 60, p. 121. doi: 10.1016/j.electacta.2011.11.033
  30. Park, H.Y., Lee, S.R., Lee, Y.J., Cho, B.W., and Cho, W.I., Bias sputtering and characterization of LiCoO 2 thin film cathodes for thin film microbattery, Mater. Chem. Phys., 2005, vol. 93, p. 70. doi: 10.1016/j.matchemphys.2005.02.024
  31. Kuwata, N., Kumar, R., Toribami, K., Suzuki, T., Hattori, T., and Kawamura, J., Thin film lithium ion batteries prepared only by pulsed laser deposition, Solid State Ionics, 2006, vol. 177, p. 2827. doi: 10.1016/j.ssi.2006.07.023
  32. Iriyama, Y., Nishimoto, K., Yada, C., Abe, T., Ogumi, Z., and Kikuchi, K., Charge-transfer reaction at the lithium phosphorus oxynitride glass electrolyte/lithium manganese oxide thin-film interface and its stability on cycling, J. Electrochem. Soc., 2006, vol. 153, p. A821. doi: 10.1149/1.2178647
  33. Liao, C.L., Lee, Y.H., and Fung, K.Z., The film growth and electrochemical properties of rf-sputtered LiCoO 2 thin films, J. Alloys Compd., 2007, vol. 436, p. 303. doi: 10.1016/j.jallcom.2006.07.033
  34. Кулова, Т.Л., Скундин, А.М., Андреев, В.Н., Грызлов, Д.Ю., Мироненко, А.А., Рудый, А.С., Гусев, В.Н., Наумов, В.В. Исследование тонкопленочных кремний-алюминиевых электродов, синтезированных в присутствии кислорода, методом циклической вольтамперометрии. Электрохимия. 2015. Т. 51. С. 1298. doi: 10.7868/S0424857015120099 [Kulova, T.L., Skundin, A.M., Andreev, V.N., Gryzlov, D.Yu., Mironenko, A.A., Rudy, A.S., Gusev, V.N., and Naumov, V.V., Cyclic Voltammetry Studies of Silicon–Aluminum Thin-Film Electrodes Synthesized in the Presence of Oxygen, Russ. J. Electrochem., 2015, vol. 51, p. 1157.] doi: 10.1134/S1023193515120095
  35. Thackeray, M.M., Baker, S.D., Adendorff, K.T., and Goodenough, J.B., Lithium insertion into Co3O4: a preliminary investigation, Solid State Ionics, 1985, vol. 17, p. 175. doi: 10.1016/0167-2738(85)90069-4
  36. Lewis, J.A., Sandoval, S.E., Liu, Y., Nelson, D.L., Yoon, S.G., Wang, R., Zhao, Y., Tian, M., Shevchenko, P., Martínez-Pañeda, E., and McDowell, M.T., Accelerated Short Circuiting in Anode‐Free Solid‐State Batteries Driven by Local Lithium Depletion, Adv. Energy Mater., 2023, vol. 13, p. 2204186. doi: 10.1002/aenm.202204186

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. (a) – substrate with batteries after applying LiPON, (b) – mask for applying the anode layer with an additional screen, (c) – substrate after applying the anode layer (in this case Si@O@Al).

Baixar (391KB)
3. Fig. 2. SEM images of a transverse cleavage of TTLIA: (a) – with a 154 nm thick Si@O@Al anode, (b) – a sample with a 15 nm thick Si@O@Al anode, (c) – with a lithiated LixSi@O@Al anode and (d) – “anodeless” sample.

Baixar (702KB)
4. Fig. 3. Raman spectrum of the LCO cathode layer deposited on a substrate with a Ti(200 nm)/SiO2 (900 nm)/Si structure.

Baixar (72KB)
5. Fig. 4. Comparison of discharge curves of anodic and “anodeless” TTLIA. Designations in the figure: 1 – Si@O@Al (154 nm)/LiPON (500 nm)/LCO (490 nm), 2 – Si@O@Al (15 nm)/LiPON (518 nm)/LCO (474 ​​nm), 3 – LixSi@O@Al (192 nm)/LiPON (513 nm)/LCO (672 nm) and 4 – “anodeless” TTLIA with the structure (in situ Li)/LiPON(571 nm)/LCO(733 nm). The current density is 32 μA/cm2, the potential window is 1.5 V – 3.8 for TTLIA with Si@O@Al-154 nm and LixSi@O@Al anodes, 3.0 – 4.0 V for “anodeless” and Si@O@Al-15 nm.

Baixar (59KB)
6. Fig. 5. CVA of TTLIA samples with different anodes. The numbering in the figure corresponds to the samples with anodes: 1 – Si@O@Al-154 nm, 2 – Si@O@Al-15 nm, 3 – LixSi@O@Al and 4 – “anodeless”. The potential scan rate is 0.5 mV/s, the cycling limits are 1.5 V-4.2 for TTLIA with Si@O@Al-154, Si@O@Al-15 nm anodes and the “anodeless” sample, 1.0-4.1 V for the LixSi@O@Al sample.

Baixar (86KB)
7. Fig. 6. Dependence of the discharge capacity on the cycle number. The numbering in the figure corresponds to the samples with anodes: 1 – Si@O@Al-154 nm, 2 – Si@O@Al-15 nm, 3 – LixSi@O@Al and 4 – “anodeless”. The charge-discharge current density is 32 μA/cm2. For the samples with the Si@O@Al-154 nm and LixSi@O@Al anodes, a potential window of 1.5 – 3.8 V was used, for the “anodeless” sample and with the thin Si@O@Al-15 nm anode – a window of 3.0 – 4.0 V.

Baixar (67KB)
8. Fig. 7. SEM images of the transverse cleavage of the “anodeless” TTLIA after cycling.

Baixar (83KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024