Metal-ceramic composites with permanent connection fabrication using spark plasma sintering

Capa

Citar

Texto integral

Resumo

The article presents a study on obtaining silicon carbide ceramics, including those with a reinforcing additive (10 wt. % SiCw whiskers), and metal-ceramic composites with a permanent connection based on this ceramics and heat-resistant alloy ZhS6U-VI using spark plasma sintering technology. The dynamics of SiC powder consolidation under SPS conditions, as well as the phase composition, structure, density and microhardness of the formed samples of SiC ceramics and its reinforced form SiC/SiCw are studied. A method for obtaining metal-ceramic composites with a permanent connection based on the obtained samples of ceramics and heat-resistant alloy ZhS6U-VI under SPS conditions is implemented. SEM and EDS methods showed that obtaining composites with defect-free boundaries of permanently connected layers of ceramics and heat-resistant alloy is achieved by forming intermediate layers of Ti-Ag and Ni-Ag binders, as well as a damper layer of Mo to compensate for a significant difference in CTLE’s values. The structural integrity of the composites was studied using electron microscopy and X-ray microtomography. As a result, it was found that the composition of SiC ceramics without the addition of SiCw whiskers is more structurally homogeneous and less brittle for obtaining a SiC—ZhS6U-VI composite with a permanent connection using the SPS technology.

Texto integral

Acesso é fechado

Sobre autores

E. Papynov

Far Eastern Federal University

Autor responsável pela correspondência
Email: papynov@mail.ru
Rússia, Vladivostok

S. Chyklinov

Moscow Aviation Institute (National Research University); CJSC "Aviation Technologies. Engineering and Consulting"

Email: papynov@mail.ru
Rússia, Moscow; Moscow

O. Shichalin

Far Eastern Federal University

Email: papynov@mail.ru
Rússia, Vladivostok

V. Sergienko

Presidium of the Far East Branch of the Russian Academy of Sciences

Email: papynov@mail.ru
Rússia, Vladivostok

E. Marchukov

Moscow Aviation Institute (National Research University)

Email: papynov@mail.ru
Rússia, Moscow

A. Mukhin

Moscow Aviation Institute (National Research University)

Email: papynov@mail.ru
Rússia, Moscow

A. Belov

Far Eastern Federal University

Email: papynov@mail.ru
Rússia, Vladivostok

S. Chistyakov

National Research Tomsk Polytechnic University

Email: papynov@mail.ru
Rússia, Tomsk

Bibliografia

  1. Shcherban N.D. // J. Ind. Eng. Chem. 2017. V. 50. № 2016. P. 15. https://doi.org/10.1016/j.jiec.2017.02.002
  2. Eom J.H., Kim Y.W., Raju S. // J. Asian Ceram. Soc. 2013. V. 1. № 3. P. 220. https://doi.org/10.1016/j.jascer.2013.07.003
  3. Nascimento R.M. do, Martinelli A.E., Buschinelli A.J.A. // Cerâmica. 2003. V. 49. № 312. P. 178. https://doi.org/10.1590/s0366-69132003000400002
  4. Zhang Y., Chen Y.K., Yu D.S. et al. // J. Mater. Res. Technol. 2020. V. 9. № 6. P. 16214. https://doi.org/10.1016/j.jmrt.2020.11.088
  5. Orru` R., Licheri R., Locci A.M. et al. // Mater. Sci. Eng. R 2009. V. 63. № 4–6. P. 127. https://doi.org/10.1016/j.mser.2008.09.003
  6. Cavaliere P. // Spark Plasma Sintering of Materials, Springer International Publishing, Cham, 2019. https://doi.org/10.1007/978-3-030-05327-7
  7. Liu W., Naka M. // Scr. Mater. 2003. V. 48. № 9. P. 1225. https://doi.org/10.1016/S1359-6462(03)00074-5
  8. Uday M.B., Ahmad-Fauzi M.N., Noor A.M. et al. // Current Issues and Problems in the Joining of Ceramic to Metal // Join. Technol., InTech. 2016. P. 159. https://doi.org/10.5772/64524
  9. Naveen Kumar N., Janaki Ram G.D., Bhattacharya S.S. // Trans. Indian Inst. Met. 2019. V. 72. № 7. P. 1837. https://doi.org/10.1007/s12666-019-01662-8
  10. Ваганова М.Л., Сорокин О.Ю., Осин И.В. // Авиационные материалы и технологии 2017. С. 306. https://doi.org/10.18577/2071-9140-2017-0-s-306-317
  11. Watanabe M., Yokoyama K., Imai Y. et al. // Ceram. Int. 2022. V. 48. № 6. P. 8706. https://doi.org/10.1016/j.ceramint.2021.12.004
  12. Vidyuk T.M., Dudina D.V., Esikov M.A. et al. // Mater. Today Proc. 2019. V. 25. P. 377. https://doi.org/10.1016/j.matpr.2019.12.095
  13. Chen Y.J., Li F.X., Liu Y.C. et al. // J. Mater. Res. Technol. 2024. V. 29. P. 3063. https://doi.org/10.1016/j.jmrt.2024.02.030
  14. Bahraminasab M., Ghaffari S., Eslami-Shahed H. // J. Mech. Behav. Biomed. Mater. 2017. V. 72. P. 82. https://doi.org/10.1016/j.jmbbm.2017.04.024
  15. Чуклинов С.В., Сергиенко В.И., Папынов Е.К. и др. // Журн. неорган. химии. 2023. Т. 68. № 1. С. 115. https://doi.org/10.31857/S0044457X22601237
  16. Папынов Е.К., Чуклинов С.В., Шичалин О.О. и др. // Авиационные двигатели. 2024. № (3)24. С. 3.
  17. Zhang Z.H., Wang F.C., Luo J. et al. // Mater. Sci. Eng. A 2010. V. 527. № 7–8. P. 2099. https://doi.org/10.1016/j.msea.2009.12.027
  18. Житнюк С.В., Сорокин О.Ю., Журавлева П.Л. // Тр. ВИАМ 2020. № 2. С. 50. https://doi.org/10.18577/2307-6046-2020-0-2-50-59
  19. Воронов В.А., Лебедева Ю.Е., Чайникова А.С. и др. // Неорган. матер. 2022. Т. 58. № 1. С. 110. https://doi.org/10.31857/s0002337x22010134
  20. Simonenko E.P., Simonenko N.P., Papynov E.K. et al. // J. Sol-Gel Sci. Technol. 2017. V. 82. № 3. P. 748. https://doi.org/10.1007/s10971-017-4367-2
  21. Shapkin N.P., Papynov E.K., Shichalin O.O. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 5. P. 629. https://doi.org/10.1134/S0036023621050168
  22. Simonenko E.P., Simonenko N.P., Kolesnikov A.F. et al. // Russ. J. Inorg. Chem. 2023. V. 68. № 4. https://doi.org/10.1134/S0036023623600272
  23. Папынов Е.К., Шичалин О.О., Чуклинов С.В. et al. // Авиационные двигатели. 2024. № 1. С. 11.
  24. Martinsen K., Hu S.J., Carlson B.E. // CIRP Ann. 2015. V. 64. № 2. P. 679. https://doi.org/10.1016/j.cirp.2015.05.006

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. General view of blanks of heat-resistant alloy ZhS6U-VI and ceramic samples (SiC) and in the composition with a reinforcing additive of 10 wt. % SiC whiskers (SiC/SiCw), obtained by IPS.

Baixar (80KB)
3. Fig. 2. Assembly diagram of press tooling for producing metal-ceramic composites with permanent connections using IPS technology.

Baixar (340KB)
4. Fig. 3. Diffraction patterns and SEM images: initial SiC powder (a, b); reinforcing additive SiCw-whiskers (c, d).

Baixar (606KB)
5. Fig. 4. Dilatometric dependences of the compaction rate of SiC powder during heating under SPS conditions up to 2000°C (a) and diffraction patterns (b) of samples of the obtained ceramics without additives (SiC) and in a composition with a reinforcing additive (SiC/SiCw).

Baixar (167KB)
6. Fig. 5. SEM images of ceramic samples obtained by IPS: a) without reinforcing additive (SiC); b) in a composition with reinforcing additive (SiC/SiCw).

Baixar (754KB)
7. Fig. 6. General view of metal-ceramic composites with a permanent connection based on SiC ceramics and ZhS6U-VI, obtained by IPS: ceramics without reinforcing additive (SiC) (a); ceramics with reinforcing additive (SiC/SiCw) (b).

Baixar (226KB)
8. Fig. 7. SEM images and EDS analysis of the cut surface of a sample of metal-ceramic composite (SiC–ZhS6U-VI) with a permanent joint obtained by SPS. Contact areas: 1) SiC ceramics and Ti-Ag bonding layer; 2) Ti-Ag bonding layer and Mo damping layer; 3) Mo damping layer and Ni-Ag bonding layer; 4) Ni-Ag bonding layer and ZhS6U-VI alloy.

Baixar (1MB)
9. Рис. 8. ЭДС-анализ с поверхности среза образца металл-керамического композита (SiС/SiCw–ЖС6У-ВИ) с неразъемным соединением, полученного ИПС. Области контакта: 1) SiC–керамика и связующий слой Ti-Ag; 2) связующий слой Ti-Ag и демпферный слой Mo; 3) демпферный слой Mo и связующий слой Ni-Ag; 4) связующий слой Ni-Ag и сплав ЖС6У-ВИ.

Baixar (1MB)
10. Fig. 9. SEM images of the cut surface of a metal-ceramic composite sample (SiC/SiCw–ЖС6У-ВИ) in the area of ​​a defect (ceramic crack).

Baixar (380KB)
11. Fig. 10. X-ray microtomography of samples of metal-ceramic composites with a permanent connection obtained by IPS: a) SiC–ZhS6U-VI; b) SiC/SiCw–ZhS6U-VI. Layers of tomographic slices (from 1 to 5) in the direction from top to bottom from ceramics to alloy.

Baixar (637KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025