Plasma electrolytic synthesis and characterization of bismuth-containing oxide films on titanium

Capa

Citar

Texto integral

Resumo

Bismuth-containing films on titanium were formed by single-stage plasma electrolytic oxidation (PEO) in pulsed mode in an electrolyte with dispersed particles containing metallic bismuth. The surface morphology and composition of the obtained films were studied by scanning electron microscopy, X-ray phase analysis, Energy-dispersive analysis and X-ray photoelectron spectroscopy. Modification of Ti/TiO2 films with bismuth leads to the appearance of anodic photocurrents in the visible region of the spectrum, a shift in the potentials of flat bands to the cathode region and an increase in the concentration of charge carriers. It is shown that the characteristics and properties of the obtained film composites are noticeably affected by the pulse duration t (0.02 or 0.05 s). At t = 0.02 s, films containing cubic particles with a diameter of 0.2 to 1 μm with an increased bismuth content are formed. Such films have a small band gap of 1.62 eV and exhibit the highest photoelectrochemical activity under the influence of visible light.

Texto integral

Acesso é fechado

Sobre autores

D. Popov

Far Eastern Federal University; Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences

Email: vasileva.ms@dvfu.ru
Rússia, Vladivostok; Vladivostok

M. Vasilyeva

Far Eastern Federal University; Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences

Autor responsável pela correspondência
Email: vasileva.ms@dvfu.ru
Rússia, Vladivostok; Vladivostok

V. Kuryavyi

Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences

Email: vasileva.ms@dvfu.ru
Rússia, Vladivostok

V. Korochentsev

Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences

Email: vasileva.ms@dvfu.ru
Rússia, Vladivostok

V. Egorkin

Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences

Email: vasileva.ms@dvfu.ru
Rússia, Vladivostok

Bibliografia

  1. Cheng G., Liu X., Xiong J. // Chem. Eng. J. 2024. P. 157491. https://doi.org/10.1016/j.cej.2024.157491
  2. Bopape D.A., Ntsendwana B., Mabasa F.D. // Heliyon. 2024. V. 10. P. E39316. https://doi.org/10.1016/j.heliyon.2024.e39316
  3. Ali T., Ahmed A., Alam U. et al. // Mater. Chem. Phys. 2018. V. 212. P. 325. https://doi.org/10.1016/j.matchemphys.2018.03.052
  4. Maeda K., Domen K. // J. Phys. Chem. Lett. 2010. V. 1 P. 2655. https://doi.org/10.1021/jz1007966
  5. Barbosa M.O., Moreira N.F.F., Ribeiro A.R. et al. // Water Res. 2016. V. 94. P. 257. https://doi.org/10.1016/j.watres.2016.02.047
  6. Fujishima A., Rao T.N., Tryk D.A. // J. Photochem. Photobiol. C: Photochem. Rev. 2000. V. 1. P. 1. https://doi.org/10.1016/S1389-5567(00)00002-2
  7. Liu Z., Wang Q., Tan X. et al. // Alloys Compd. 2020. V. 815. P. 152478. https://doi.org/10.1016/j.jallcom.2019.152478
  8. Chen Y., Chen D., Chen J. et al. // Alloys Compd. 2015. V. 651. P. 114. https://doi.org/10.1016/j.jallcom.2015.08.119
  9. Pellegrino G., Mineo G., Strano V. et al. // Colloids Surf. A: Physicochem. Eng. Asp. 2025. V. 705. P. 135738. https://doi.org/10.1016/j.colsurfa.2024.135738
  10. Borilo L.P., Mal’chik A.G., Kuznetsova S.A. et al. // Russ. J. Inorg. Chem. 2014. V. 59. P. 1065. https://doi.org/10.1134/S0036023614100039
  11. Ilsatoham M.I., Alkian I., Azzahra G. et al. // Results Eng. 2023. V. 17. P. N100991. https://doi.org/10.1016/j.rineng.2023.100991.
  12. Cai N., Mai Y., Su R. et al. // Mater. Lett. 2024. V. 365. P. 136464. https://doi.org/10.1016/j.matlet.2024.136464
  13. Alizad S., Fattah-alhosseini A., Karbasi M. et al. // Ceram. Int. 2024. V. 50. № 22. P. 45083. https://doi.org/10.1016/j.ceramint.2024.08.347
  14. Vasilyeva M.S., Lukiyanchuk I.V., Budnikova Yu.B. et al. // ChemPhysMater. 2024. V. 3. № 3. P. 293. https://doi.org/10.1016/j.chphma.2024.03.003
  15. Vasilyeva M.S, Lukiyanchuk I.V., Sergeev A.A. et al. // Surf. Coat. Technol. 2021. V. 424. P. 127640. https://doi.org/10.1016/j.surfcoat.2021.127640
  16. Rogov A.B. // Mater. Chem. Phys. 2015. V. 167 P. 136. https://doi.org/10.1016/j.matchemphys.2015.10.020
  17. Rogov A.B., Terleeva O.P., Mironov I.V. et al. // Appl. Surf. Sci. 2012. V. 258. P. 2761. https://doi.org/10.1016/j.apsusc.2011.10.128
  18. Amsheeva A.A. // J. Anal. Chem. 1978. V. 33. № 6. P. 814. WOS:A1978GF08000003
  19. Moulder F., Stickle W.F., Sobol P.E. et al. Handbook of X-ray Photoelectron Spectroscopy, Eden Prairie: Physical Electronics, USA, 1995. 262 p.
  20. Salmanzadeh-Jamadi Z., Habibi-Yangjeh A., Khataee A. // J. Ind. Eng. Chem. 2024. V. 143. P. 354. https://doi.org/10.1016/j.jiec.2024.08.037
  21. Liang Y.-C., You S.-Y., Chen B.-Y. // Int. J. Mol. Sci. 2022. V 23. P. 12024. https://doi.org/10.3390/ijms231912024
  22. He Y., Cai J., Zhang L. et al. // Ind. Eng. Chem. Res. 2014. V. 53. № 14. P. 5905. https://doi.org/10.1021/ie4043856
  23. Muñoz A.G. // Electrochim. Acta. 2007. V. 52. № 12. P. 4167. https://doi.org/10.1016/j.electacta.2006.11.035
  24. Tsui L., Homma T., Zangari G. // J. Phys. Chem. C. 2013. V. 117. № 14. P. 6979. https://doi.org/10.1021/jp400318n
  25. Schneider M., Schroth S., Schilm J. et al. // Electrochim. Acta. 2009. V. 54. № 9. P. 2663. https://doi.org/10.1016/j.electacta.2008.11.003

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Formation curves of samples: 1 – Ti/Bi(0.02); 2 – Ti/Bi(0.05).

Baixar (92KB)
3. Fig. 2. SEM images of samples: a, c – Ti/Bi(0.02), b – Ti/Bi(0.05) and d – energy dispersive spectrum of particles.

Baixar (756KB)
4. Fig. 3. X-ray photoelectron spectra of Bi4f (a, b), Ti2p (c, d) and O1s (d, f) for samples: a, c, d – Ti/Bi(0.02); b, d, f – Ti/Bi(0.05).

Baixar (538KB)
5. Fig. 4. Diffuse absorption spectra of samples (a) and Tauc plots (b) for samples: 1 – Ti/Bi(0.02); 2 – Ti/Bi(0.05).

Baixar (152KB)
6. Fig. 5. Photocurrent profiles under the action of UV (a) and visible (b, c) light for samples: 1 – Ti/Bi(0.02); 2 – Ti/Bi(0.05) and 3 –Ti/TiO2. a, b – without applying a potential, c – with applying a potential of 0.6 V.

Baixar (160KB)
7. Fig. 6. a) Nyquist diagrams; b) Mott–Schottky diagrams for samples: 1 – Ti/Bi(0.02); 2 – Ti/Bi(0.05) and 3 –Ti/TiO2.

Baixar (146KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025