Mechanochemical synthesis of polyalumodiphenylsiloxanes

Resumo

The purpose of the presented work was to study the possibility of mechanochemical synthesis of polyaluminomodiphenylsiloxanes. For the first time, diphenylsilanediol and tributoxyaluminium were used for synthesis under conditions of mechanical activation. It was found that alumodiphenylsiloxanes with a Si/Al ratio close to the set one are formed, and an increase in the activation time leads to an increase in the rate of homocondensation of the initial diphenylsilanediol and, as a result, an increase in the Si/Al ratio. Using IR- and NMR-spectroscopy, it was found that the aluminum atom forms a polymer aluminosiloxane chain with silanediol, in which butoxyl groups are preserved. It is shown that the obtained compounds have significantly lower thermal stability than spatially branched organometallic siloxanes. The compounds obtained in the work are characterized by modern methods of analysis.

Texto integral

Acesso é fechado

Sobre autores

A. Kapustina

Far Eastern Federal University

Autor responsável pela correspondência
Email: kapustina.aa@dvfu.ru
Rússia, Vladivostok

V. Libanov

Far Eastern Federal University

Email: kapustina.aa@dvfu.ru
Rússia, Vladivostok

D. Fomen

Far Eastern Federal University

Email: kapustina.aa@dvfu.ru
Rússia, Vladivostok

Bibliografia

  1. Лапшин О.В., Болдырева Е.В., Болдырев В.В. // Журн. неорган. химии. 2021. Т. 66. № 3. С. 402. https://doi.org/10.31857/S0044457X21030119
  2. Krusenbaum A.A., Grätz S., Tamiru G. et al. // Chem. Soc. Rev. 2022. V. 51. P. 2873. https://doi.org/10.1039/D1CS01093J
  3. Al-Ithawi W.K.A., Khasanov A.F., Kovalev I.S. et al. // Polymers (Basel). 2023. V. 15. № 8. P. 1853. https://doi.org/10.3390/polym15081853
  4. Feng H., Shao X., Wang Z. // Chempluschem. 2024. V. 89. № 10. P. e202400287. https://doi.org/10.1002/cplu.202400287
  5. Schrettl S., Balkenende D.W.R., Calvino C. et al. // CHIMIA Int. J. Chem. 2019. V. 73. № 1. P. 7. https://doi.org/10.2533/chimia.2019.7
  6. Lee J.W., Park J., Lee J. et al. // ChemSusChem. 2021. V. 14. № 18. P. 3801. https://doi.org/10.1002/cssc.202101131
  7. Batten S.R., Champness N.R., Chen X.M. et al. // Pure Appl. Chem. 2013. V. 85. № 8. P. 1715. https://doi.org/10.1351/PAC-REC-12-11-20
  8. Bennett T.D., Cheetham A.K. // Accounts Chem. Res. 2014. V. 47. № 5. P. 1555. https://doi.org/10.1021/ar5000314
  9. Bennett T.D., Coudert F.-X., James S.L. et al. // Nature Materials. 2021. V. 20. № 9. P. 1179. https://doi.org/10.1038/s41563-021-00957-w
  10. Либанов В.В., Капустина А.А., Шапкин Н.П. и др. // Бутлеровские сообщения. 2015. Т. 41. № 3. С. 18.
  11. Капустина А.А., Либанов В.В., Шапкин Н.П. и др. // Известия высших учебных заведений. Сер. Химия и химическая технология. 2022. Т. 65. № 12. С. 59. https://doi.org/10.6060/ivkkt.20226512.6660
  12. Shapkin N.P., Papynov E.K., Kapustina A.A. et al. // Polymer Bull. 2022. V. 79. № 9. P. 7429. https://doi.org/10.1007/s00289-021-03819-2
  13. Kujawa J., Kujawski W., Koter S. et al. // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2013. V. 420. P. 64
  14. Santiago A., Gonzаlez J., Iruin J. et al. // Macromolecular Symposia (Conference Paper). 2012. V. 321-322. № 1. P. 150.
  15. Петрунин М.А., Максаева Л.Б., Гладких Н.А. и др. // Физикохимия поверхности и защита материалов. 2022. T. 58. № 2. С. 115. https://doi.org/10.31857/S0044185622020140
  16. Im H., Kim J. // J. Mater. Sci. 2011. V. 46. № 20. P. 6571
  17. Тимофеева С.В., Малясова А.С., Хелевина О.Г. // Пожаровзрывобезопасность. 2010. Т. 19. № 10. С. 25
  18. Brankovic Z., Brankovic G., Jovalekic C. et al. // Mater. Sci. Eng. A. 2003. V. 345. P. 243.
  19. Либанов В.В., Капустина А.А., Соколова Л.И. и др. Элементоорганические высокомолекулярные соединения. М.: Новый формат, 2022. 248 с.
  20. Lu H., Wang X., Yao Y. et al. // Composites Part B. 2015. V. 80. P. 1.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. IR spectrum of aluminum diphenylsiloxane of synthesis 1.

Baixar (144KB)
3. Fig. 2. 1H NMR spectrum of aluminum diphenylsiloxane from synthesis 1.

Baixar (152KB)
4. Fig. 3. 13C NMR spectrum of aluminum diphenylsiloxane from synthesis 1.

Baixar (194KB)
5. Fig. 4. 29Si NMR spectrum of aluminum diphenylsiloxane from synthesis 1.

Baixar (214KB)
6. Fig. 5. 27Al NMR spectrum of aluminum diphenylsiloxane from synthesis 1.

Baixar (173KB)
7. Fig. 6. Micrograph of aluminum diphenylsiloxane of synthesis 1.

Baixar (144KB)
8. Fig. 7. Micrograph of aluminum diphenylsiloxane of synthesis 2.

Baixar (144KB)
9. Rice. 8. Thermogram of synthesis product 1.

Baixar (76KB)
10. Rice. 9. Thermogram of synthesis product 2.

Baixar (76KB)
11. Formula

Baixar (38KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025