Низкотемпературные термодинамические свойства Cu(C11H19O2)2. Универсальное описание теплоемкости дипивалоилметанатов металлов

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Теплоемкость комплекса бис-дипивалоилметаната меди (Cu(C11H19O2)2 или Cu(dpm)2; CAS номер: 14040-05-2) измерена в интервале температур от 5.440 до 313.271 K методом адиабатической калориметрии. В функциональном поведении теплоемкости в исследуемой области температур не было выявлено каких-либо аномалий, которые можно было бы связать с фазовыми переходами. Данные о теплоемкости использованы для расчета энтропии, приращения энтальпии и приведенной энергии Гиббса в интервале температур от 0 до 310 K. В результате проведенного анализа предложено универсальное описание теплоемкости для дипивалоилметанатов металлов в широкой области температур, которое может быть использовано для вычисления термодинамических характеристик еще неизученных объектов из данной изолигандной группы бета-дикетонатов металлов.

Полный текст

Доступ закрыт

Об авторах

М. А. Беспятов

Институт неорганической химии им. А. В. Николаева СО РАН

Автор, ответственный за переписку.
Email: bespyatov@niic.nsc.ru
Россия, 630090 Новосибирск

И. С. Черняйкин

Институт неорганической химии им. А. В. Николаева СО РАН

Email: bespyatov@niic.nsc.ru
Россия, 630090 Новосибирск

Т. М. Кузин

Институт неорганической химии им. А. В. Николаева СО РАН

Email: bespyatov@niic.nsc.ru
Россия, 630090 Новосибирск

П. А. Стабников

Институт неорганической химии им. А. В. Николаева СО РАН

Email: bespyatov@niic.nsc.ru
Россия, 630090 Новосибирск

Н. В. Гельфонд

Институт неорганической химии им. А. В. Николаева СО РАН

Email: bespyatov@niic.nsc.ru
Россия, 630090 Новосибирск

Список литературы

  1. Zhang J., Wang F., Shenoy V.B., et. al. // Mater. Today. 2020. V. 40. P. 132. https://doi.org/10.1016/j.mattod.2020.06.012
  2. Mukhopadhyay S., Shalini K., Devi A., Shivashankar S. // Bull. Mater. Sci., 2002. V. 25. P. 391. http://dx.doi.org/10.1007/BF02708016
  3. Ribeiro Da Silva M.A.V., Ribeiro Da Silva M.D.M.C., Carvalho A.P.S.M.C., et al. // J. Chem. Therm. 1984. V. 16. P. 137. https://doi.org/10.1016/0021-9614(84)90146-0
  4. Johnson M.G., Selvakumar J., Nagaraja K.S. // Thermochim. Acta. 2009. V. 495. P. 38. https://doi.org/10.1016/j.tca.2009.05.014
  5. Смирнова Н.Н., Маркин А.В., Сологубов С.С., и др. // Журн. физ. химии. 2022. Т. 96. С. 1118. https://doi.org/10.31857/S0044453722080210 (Smirnova N.N., Markin A.V., Sologubov S.S. et. al. // Rus. J. Phys. Chem. A. 2022. V. 96. P. 1637.) https://doi.org/10.1134/S0036024422080210
  6. Гоголь Д.Б., Таймасова Ш.Т., Бисенгалиева М.Р., и др. // Там же. 2022. Т. 96. С. 1273. https://doi.org/10.31857/S0044453722090102 (Gogol D.B., Taimassova Sh.T., Bissengaliyeva M.R. et. al. // Ibid. 2022. V. 96. P. 1872.) https://doi.org/10.1134/S0036024422090102
  7. Kuzin T.M., Bespyatov M.A., Naumov V.N., et al. // Thermochim. Acta. 2015. V. 602. P. 49. http://dx.doi.org/10.1016/j.tca.2015.01.008
  8. Стабников П.А. // Журн. общ. химии. 2013. Т. 83. С. 1713. (Stabnikov P.A. // Russ. J. Gen. Chem. 2013. V. 83. P. 1919.) https://doi.org/10.1134/S1070363213100204
  9. Moshier R.W., Sievers R.E. “Gas Cromatography of Metal Chelates”. Oxford: Pergamon Press. 1966. Р. 175.
  10. Sans-Lenain S., Gleizes A. // Inorg. Chim. Acta. 1993. V. 211. P. 67. https://doi.org/10.1016/S0020-1693(00)82845-5
  11. Наумов В.Н., Ногтева В.В. // Приборы и техника эксперимента. 1985. Т. 28. № 5. С. 186. (Naumov V.N., Nogteva V.V. // Instrum. Exp. Tech. 1985. V. 28. P. 1194.)
  12. Bespyatov M.A. // J. Chem. Eng. Data. 2020. V. 65. P. 5218. https://doi.org/10.1021/acs.jced.0c00391
  13. Drebushchak V.A., Naumov V.N., Nogteva V.V., et al. // Thermochim. Acta. 2000. V. 348. P. 33. https://doi.org/10.1016/S0040-6031(99)00453-0
  14. Rybkin N.P., Orlova M.P., Baranyuk A.K., et al. // Meas. Tech. 1974. V. 17. P. 1021. https://doi.org/10.1007/BF00811877
  15. Sabbah R., Xu-wu A., Chickos J.S., et al. // Thermochim. Acta 1999. V. 331. P. 93. https://doi.org/10.1016/S0040-6031(99)00009-X
  16. Voskov A.L., Kutsenok I.B., Voronin G.F. // Calphad. 2018. V. 61. P. 50. https://doi.org/10.1016/j.calphad.2018.02.001
  17. Перевощиков А.В., Коваленко Н.А., Успенская И.А. // Журн. физ. химии. 2023. T. 97. С. 486. https://doi.org/10.31857/S0044453723040234 (Perevoshchikov A.V., Kovalenko N.A., Uspenskaya I.A. // Russ. J. Phys. Chem. 2023. V. 97. P. 565.) https://doi.org/10.1134/S0036024423040222
  18. Восков А.Л. // Журн. физ. химии. 2022. Т. 96. С. 1296. https://doi.org/10.31857/S0044453722090308 (Voskov A.L. // Rus. J. Phys. Chem. A. 2022. V. 96. P. 1895.) https://doi.org/10.1134/S0036024422090291
  19. Debye P. // Ann. Phys. 1912. V. 344. P. 789.
  20. Беспятов М.А., Черняйкин И.С., Кузин Т.М., Гельфонд Н.В. // Журн. физ. химии. 2022. Т. 96. С. 1266. https://doi.org/10.31857/S0044453722090047 (Bespyatov M.A., Cherniaikin I.S., Kuzin T.M., Gelfond N.V. // Rus. J. Phys. Chem. A. 2022. V. 96. P. 1865.) https://doi.org/10.1134/S0036024422090047
  21. Черняйкин И.С., Беспятов М.А., Доровских С.И. и др. // Журн. неорган. химии. 2020. Т. 65. С. 603.
  22. (Chernyaykin I.S., Bespyatov M.A., Dorovskikh S.I. et. al. // Russ. J. Inorg. Chem. 2020. V. 65. P. 1.) https://doi.org/10.1134/S0036023620050058 Bespyatov M.A., Chernyaikin I.S., Naumov V.N. et. al. // Thermochim. Acta. 2014. V. 596. P. 40. http://dx.doi.org/10.1016/j.tca.2014.09.017
  23. Bespyatov M.A., Cherniaikin I.S., Zherikova K.V. et. al. // J. Chem. Thermodynamics. 2017. V. 110. P. 171. https://doi.org/10.1016/j.jct.2017.02.026
  24. Bespyatov M.A., Cherniaikin I.S., Stabnikov P.A. et. al. // Ibid. 2020. V. 140. P. 105904. https://doi.org/10.1016/j.jct.2019.105904
  25. Bespyatov M.A. // Ibid. 2020. V. 147. P. 106123. https://doi.org/10.1016/j.jct.2020.106123
  26. Naumov V.N., Frolova G.I., Bespyatov M.A, et. al. // Thermochim. Acta. 2005. V. 436. P. 135. https://doi.org/10.1016/j.tca.2005.03.016
  27. Naumov V.N., Nemov N.A., Frolova G.I., et. al. // Comput. Mater. Sci. 2006. V. 36. P. 238. https://doi.org/10.1016/j.commatsci.2005.02.020
  28. Bespyatov M.A. // J. Chem. Thermodynamics. 2019. V. 137. P. 1. https://doi.org/10.1016/j.jct.2019.05.010
  29. Bespyatov M.A. // J. Chem. Eng. Data. 2020. V. 65. P. 5218. https://doi.org/10.1021/acs.jced.0c00391

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Схема молекулы Cu(C11H19O2)2.

Скачать (10KB)
3. Рис. 2. Теплоемкость в координатах Cp,m(T)/(RT) от T 2 для Cu(C11H19O2)3 в диапазоне температур 0–25 K: черные кружки – экспериментальные данные, пунктирная линия соответствует закону Дебая.

Скачать (16KB)
4. Рис. 3. Экспериментальная (а) и нормированная на число атомов (n) в молекуле (б) теплоемкость дипивалоилметанатов металлов: черные треугольники – Cu(dpm)2, снежинки – Pd(dpm)2 [20], пустые кружки – Co(dpm)3 [21], крестики – Al(dpm)3 [22], черные квадраты – Zr(dpm)4 [23], пустые треугольники – [Eu(dpm)3]2 [24], черные кружки – [Tb(dpm)3]2 [25].

Скачать (75KB)
5. Рис. 4. Отклонения (ΔС=Cp,m – СUNI) экспериментальных значений теплоемкости дипивалоилметанатов металлов от универсального описания СUNI (2): черные треугольники – Cu(dpm)2, снежинки – Pd(dpm)2, пустые кружки – Co(dpm)3, крестики – Al(dpm)3, черные квадраты – Zr(dpm)4, пустые треугольники – [Eu(dpm)3]2, черные кружки – [Tb(dpm)3]2.

Скачать (42KB)

© Российская академия наук, 2024